Initial Commit

Working Vulkano test
This commit is contained in:
CanadianBaconBoi 2025-07-13 18:28:04 +02:00
commit bc0b8be368
11 changed files with 2823 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

8
.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

View File

@ -0,0 +1,7 @@
<component name="ProjectDictionaryState">
<dictionary name="project">
<words>
<w>swapchain</w>
</words>
</dictionary>
</component>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/vulkano-testing.iml" filepath="$PROJECT_DIR$/.idea/vulkano-testing.iml" />
</modules>
</component>
</project>

7
.idea/vcs.xml Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
<mapping directory="/mnt/data/User Library/Documents/Projects/Rust/vulkano-testing" vcs="Git" />
</component>
</project>

11
.idea/vulkano-testing.iml Normal file
View File

@ -0,0 +1,11 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="EMPTY_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/target" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

2132
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

13
Cargo.toml Normal file
View File

@ -0,0 +1,13 @@
[package]
name = "vulkano-testing"
version = "0.1.0"
edition = "2024"
[dependencies]
vulkano = "0.35.1"
vulkano-shaders = "0.35.0"
winit = {version = "0.30.11", features = ["wayland"]}
# Reduce debug speed artifacts
[profile.dev]
opt-level = 1

315
src/app.rs Normal file
View File

@ -0,0 +1,315 @@
use std::sync::Arc;
use vulkano::buffer::{Buffer, BufferCreateInfo, BufferUsage, Subbuffer};
use vulkano::command_buffer::{CommandBufferExecFuture, PrimaryAutoCommandBuffer};
use vulkano::device::{DeviceExtensions};
use vulkano::image::{Image};
use vulkano::image::view::ImageView;
use vulkano::instance::{Instance, InstanceCreateFlags, InstanceCreateInfo};
use vulkano::memory::allocator::{AllocationCreateInfo, MemoryTypeFilter};
use vulkano::render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass};
use vulkano::shader::ShaderModule;
use vulkano::swapchain::{PresentFuture, Surface, SwapchainAcquireFuture, SwapchainCreateInfo, SwapchainPresentInfo};
use vulkano::{swapchain, sync, Validated, VulkanError, VulkanLibrary};
use vulkano::sync::future::{FenceSignalFuture, JoinFuture};
use vulkano::sync::GpuFuture;
use winit::application::ApplicationHandler;
use winit::event::{WindowEvent};
use winit::event_loop::ActiveEventLoop;
use winit::platform::x11::WindowAttributesExtX11;
use winit::window::{Window, WindowId};
use crate::util::{MyVertex, VulkanoWrapper};
#[derive(Default)]
pub(crate) struct App {
window: Option<Window>,
wrapper: Option<Arc<VulkanoWrapper>>,
vs: Option<Arc<ShaderModule>>,
fs: Option<Arc<ShaderModule>>,
command_buffers: Option<Vec<Arc<PrimaryAutoCommandBuffer>>>,
queue: Option<Arc<vulkano::device::Queue>>,
vertex_buffer: Option<Subbuffer<[MyVertex]>>,
pipeline: Option<Arc<vulkano::pipeline::GraphicsPipeline>>,
framebuffers: Option<Vec<Arc<Framebuffer>>>,
fences: Option<Vec<Option<Arc<FenceSignalFuture<PresentFuture<CommandBufferExecFuture<JoinFuture<Box<dyn GpuFuture>, SwapchainAcquireFuture>>>>>>>>,
previous_fence_i: usize,
window_resized: bool,
recreate_swapchain: bool,
}
fn get_framebuffers(
images: &[Arc<Image>],
render_pass: &Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
println!("Application resumed");
self.window = Some(event_loop.create_window(
Window::default_attributes()
.with_base_size(winit::dpi::LogicalSize::new(1024.0, 768.0))
.with_title("Hello, world!"),
).unwrap());
let window = self.window.as_ref().unwrap();
let library = VulkanLibrary::new().expect("failed to load Vulkan library");
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
).expect("failed to create instance");
self.wrapper = Some(Arc::new(VulkanoWrapper::new(instance, window, DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
})));
let wrapper = if let Some(wrapper) = self.wrapper.as_ref() {wrapper} else {panic!("wrapper has disappeared")};
self.framebuffers = Some(get_framebuffers(&wrapper.images, &wrapper.render_pass));
self.queue = Some(wrapper.queues.first().unwrap().clone());
let vertex1 = MyVertex {
position: [-0.5, -0.5],
};
let vertex2 = MyVertex {
position: [0.0, 0.5],
};
let vertex3 = MyVertex {
position: [0.5, -0.25],
};
self.vertex_buffer = Some(Buffer::from_iter(
wrapper.memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vec![vertex1, vertex2, vertex3],
).unwrap());
self.vs = Some(vs::load(wrapper.device.clone()).expect("failed to create shader module"));
self.fs = Some(fs::load(wrapper.device.clone()).expect("failed to create shader module"));
self.pipeline = Some(wrapper.get_pipeline(
self.vs.clone().unwrap(),
self.fs.clone().unwrap(),
wrapper.render_pass.clone(),
wrapper.viewport.read().unwrap().clone(),
));
self.command_buffers = Some(wrapper.get_command_buffers(
&self.queue.clone().unwrap(),
&self.pipeline.clone().unwrap(),
&self.framebuffers.clone().unwrap(),
&self.vertex_buffer.clone().unwrap(),
));
let frames_in_flight = wrapper.images.len();
self.fences = Some(vec![None; frames_in_flight]);
}
fn window_event(&mut self, event_loop: &ActiveEventLoop, id: WindowId, event: WindowEvent) {
match event {
WindowEvent::CloseRequested => {
println!("The close button was pressed; stopping");
event_loop.exit();
},
WindowEvent::RedrawRequested => {
println!("{}", self.previous_fence_i);
// Redraw the application.
//
// It's preferable for applications that do not render continuously to render in
// this event rather than in AboutToWait, since rendering in here allows
// the program to gracefully handle redraws requested by the OS.
// Draw.
let wrapper = if let Some(wrapper) = self.wrapper.clone() {wrapper} else {panic!("wrapper has disappeared")};
let queue = self.queue.clone().unwrap();
let swapchain = wrapper.swapchain.read().unwrap().clone();
let (image_i, suboptimal, acquire_future) =
match swapchain::acquire_next_image(swapchain.clone(), None)
.map_err(Validated::unwrap)
{
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
self.recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
self.recreate_swapchain = true;
}
let fences = self.fences.as_mut().unwrap();
if let Some(image_fence) = &fences[image_i as usize] {
image_fence.wait(None).unwrap();
}
let previous_future = match fences[self.previous_fence_i].clone() {
// Create a `NowFuture`.
None => {
let mut now = sync::now(wrapper.device.clone());
now.cleanup_finished();
now.boxed()
}
// Use the existing `FenceSignalFuture`.
Some(fence) => fence.boxed(),
};
let future = previous_future
.join(acquire_future)
.then_execute(queue.clone(), self.command_buffers.clone().unwrap()[image_i as usize].clone())
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_i),
)
.then_signal_fence_and_flush();
fences[image_i as usize] = match future.map_err(Validated::unwrap) {
Ok(value) => Some(Arc::new(value)),
Err(VulkanError::OutOfDate) => {
self.recreate_swapchain = true;
None
}
Err(e) => {
println!("failed to flush future: {e}");
None
}
};
self.previous_fence_i = image_i as usize;
// Queue a RedrawRequested event.
//
// You only need to call this if you've determined that you need to redraw in
// applications which do not always need to. Applications that redraw continuously
// can render here instead.
//self.window.as_ref().unwrap().request_redraw();
},
WindowEvent::Resized(_) => {
self.window_resized = true;
},
_ => (),
}
}
fn about_to_wait(&mut self, event_loop: &ActiveEventLoop) {
if self.recreate_swapchain {
self.recreate_swapchain = false;
let new_dimensions = if let Some(window) = &self.window {
window.inner_size()
} else {
panic!("window is None");
};
let wrapper = if let Some(wrapper) = self.wrapper.clone() {wrapper} else {panic!("wrapper has disappeared")};
let (new_swapchain, new_images) = wrapper.swapchain.read().unwrap()
.recreate(SwapchainCreateInfo {
// Here, `image_extend` will correspond to the window dimensions.
image_extent: new_dimensions.into(),
..wrapper.swapchain.read().unwrap().create_info()
})
.expect("failed to recreate swapchain: {e}");
*wrapper.swapchain.write().unwrap() = new_swapchain;
let new_framebuffers = get_framebuffers(&new_images, &wrapper.render_pass);
self.framebuffers = Some(new_framebuffers);
if self.window_resized {
self.window_resized = false;
let mut viewport = wrapper.viewport.write().unwrap();
viewport.extent[0] = new_dimensions.width as f32;
self.pipeline = Some(wrapper.get_pipeline(
self.vs.clone().unwrap(),
self.fs.clone().unwrap(),
wrapper.render_pass.clone(),
viewport.clone(),
));
self.command_buffers = Some(wrapper.get_command_buffers(
&self.queue.clone().unwrap(),
&self.pipeline.clone().unwrap(),
&self.framebuffers.clone().unwrap(),
&self.vertex_buffer.clone().unwrap(),
));
}
}
}
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 460
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 460
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}

14
src/main.rs Normal file
View File

@ -0,0 +1,14 @@
use winit::event_loop::{ControlFlow, EventLoop};
use crate::app::App;
mod util;
mod app;
fn main() {
let event_loop = EventLoop::new().unwrap();
// BEGIN WINDOW INIT
event_loop.set_control_flow(ControlFlow::Poll);
let mut app = App::default();
let _ = event_loop.run_app(&mut app);
}

307
src/util.rs Normal file
View File

@ -0,0 +1,307 @@
use std::sync::{Arc, RwLock};
use vulkano::buffer::{BufferContents, Subbuffer};
use vulkano::command_buffer::allocator::StandardCommandBufferAllocator;
use vulkano::command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, PrimaryAutoCommandBuffer, RenderPassBeginInfo, SubpassBeginInfo, SubpassContents, SubpassEndInfo};
use vulkano::descriptor_set::allocator::StandardDescriptorSetAllocator;
use vulkano::device::{Device, DeviceCreateInfo, DeviceExtensions, Queue, QueueCreateInfo, QueueFlags};
use vulkano::device::physical::{PhysicalDevice, PhysicalDeviceType};
use vulkano::image::{Image, ImageCreateInfo, ImageUsage};
use vulkano::instance::Instance;
use vulkano::memory::allocator::{AllocationCreateInfo, StandardMemoryAllocator};
use vulkano::pipeline::graphics::vertex_input::{Vertex, VertexDefinition};
use vulkano::pipeline::graphics::viewport::{Viewport, ViewportState};
use vulkano::pipeline::{GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo};
use vulkano::pipeline::graphics::color_blend::{ColorBlendAttachmentState, ColorBlendState};
use vulkano::pipeline::graphics::GraphicsPipelineCreateInfo;
use vulkano::pipeline::graphics::input_assembly::InputAssemblyState;
use vulkano::pipeline::graphics::multisample::MultisampleState;
use vulkano::pipeline::graphics::rasterization::RasterizationState;
use vulkano::pipeline::layout::PipelineDescriptorSetLayoutCreateInfo;
use vulkano::render_pass::{Framebuffer, RenderPass, Subpass};
use vulkano::shader::ShaderModule;
use vulkano::swapchain::{Surface, Swapchain, SwapchainCreateInfo};
use winit::window::Window;
pub struct VulkanoWrapper {
pub instance: Arc<Instance>,
pub surface: Arc<Surface>,
pub device: Arc<Device>,
pub memory_allocator: Arc<StandardMemoryAllocator>,
pub command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
pub descriptor_set_allocator: Arc<StandardDescriptorSetAllocator>,
pub swapchain: RwLock<Arc<Swapchain>>,
pub images: Vec<Arc<Image>>,
pub queues: Vec<Arc<Queue>>,
pub render_pass: Arc<RenderPass>,
pub viewport: Arc<RwLock<Viewport>>,
}
impl VulkanoWrapper {
pub fn new(instance: Arc<Instance>, window: &Window, device_extensions: DeviceExtensions) -> Self {
let surface = unsafe {Surface::from_window_ref(instance.clone(), window)}.unwrap();
let (physical_device, queue_family_index) = Self::select_physical_device(&instance, &surface, &device_extensions);
for family in physical_device.queue_family_properties() {
println!("Found a queue family with flags: ({:?}) with {} queues", family.queue_flags, family.queue_count)
}
let (device, queues) = Device::new(
physical_device.clone(),
DeviceCreateInfo {
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
enabled_extensions: device_extensions,
..Default::default()
},
).expect("failed to create logical device");
let caps = physical_device
.surface_capabilities(&surface, Default::default())
.expect("failed to get surface capabilities");
let dimensions = window.inner_size();
let composite_alpha = caps.supported_composite_alpha.into_iter().next().unwrap();
let image_format = physical_device
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let command_buffer_allocator = Arc::new(
StandardCommandBufferAllocator::new(
device.clone(),
Default::default()
)
);
let descriptor_set_allocator = Arc::new(
StandardDescriptorSetAllocator::new(
device.clone(),
Default::default()
)
);
let (swapchain, images) = Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: caps.min_image_count + 1, // How many buffers to use in the swapchain
image_format,
image_extent: dimensions.into(),
image_usage: ImageUsage::COLOR_ATTACHMENT, // What the images are going to be used for
composite_alpha,
..Default::default()
},
).unwrap();
let queues = queues.into_iter().collect();
let render_pass = Self::get_render_pass(&device, &swapchain);
let swapchain = RwLock::new(swapchain);
Self {
instance,
surface,
device,
memory_allocator,
command_buffer_allocator,
descriptor_set_allocator,
swapchain,
images,
queues,
render_pass,
viewport: Arc::new(RwLock::new(Viewport {
offset: [0.0, 0.0],
extent: window.inner_size().into(),
depth_range: 0.0..=1.0,
}))
}
}
fn select_physical_device(
instance: &Arc<Instance>,
surface: &Arc<Surface>,
device_extensions: &DeviceExtensions,
) -> (Arc<PhysicalDevice>, u32) {
instance
.enumerate_physical_devices()
.expect("could not enumerate devices")
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
// Find the first first queue family that is suitable.
// If none is found, `None` is returned to `filter_map`,
// which disqualifies this physical device.
.position(|(i, q)| {
q.queue_flags.contains(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|q| (p, q as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
// Note that there exists `PhysicalDeviceType::Other`, however,
// `PhysicalDeviceType` is a non-exhaustive enum. Thus, one should
// match wildcard `_` to catch all unknown device types.
_ => 4,
})
.expect("no device available")
}
fn get_render_pass(device: &Arc<Device>, swapchain: &Swapchain) -> Arc<RenderPass> {
vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
// Set the format the same as the swapchain.
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
).unwrap()
}
pub fn create_image(&self, image_create_info: ImageCreateInfo, allocation_create_info: AllocationCreateInfo) -> Arc<Image> {
Image::new(
self.memory_allocator.clone(),
image_create_info,
allocation_create_info,
).unwrap()
}
pub fn get_pipeline(&self, vs: Arc<ShaderModule>, fs: Arc<ShaderModule>, rp: Arc<RenderPass>, vp: Viewport) -> Arc<GraphicsPipeline> {
get_pipeline(self.device.clone(), vs, fs, rp, vp)
}
pub fn get_command_buffers(&self, queue: &Arc<Queue>, pipeline: &Arc<GraphicsPipeline>, framebuffers: &Vec<Arc<Framebuffer>>, vb: &Subbuffer<[MyVertex]>) -> Vec<Arc<PrimaryAutoCommandBuffer>> {
get_command_buffers(self.command_buffer_allocator.clone(), queue, pipeline, framebuffers, vb)
}
}
fn get_pipeline(
device: Arc<Device>,
vs: Arc<ShaderModule>,
fs: Arc<ShaderModule>,
render_pass: Arc<RenderPass>,
viewport: Viewport,
) -> Arc<GraphicsPipeline> {
let vs = vs.entry_point("main").unwrap();
let fs = fs.entry_point("main").unwrap();
let vertex_input_state = MyVertex::per_vertex()
.definition(&vs)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState::default()),
viewport_state: Some(ViewportState {
viewports: [viewport].into_iter().collect(),
..Default::default()
}),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
}
fn get_command_buffers(
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
queue: &Arc<Queue>,
pipeline: &Arc<GraphicsPipeline>,
framebuffers: &Vec<Arc<Framebuffer>>,
vertex_buffer: &Subbuffer<[MyVertex]>,
) -> Vec<Arc<PrimaryAutoCommandBuffer>> {
framebuffers
.iter()
.map(|framebuffer| {
let mut builder = AutoCommandBufferBuilder::primary(
command_buffer_allocator.clone(),
queue.queue_family_index(),
// Don't forget to write the correct buffer usage.
CommandBufferUsage::MultipleSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.1, 0.1, 0.1, 1.0].into())],
..RenderPassBeginInfo::framebuffer(framebuffer.clone())
},
SubpassBeginInfo {
contents: SubpassContents::Inline,
..Default::default()
},
)
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap();
unsafe {
builder
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap();
}
builder
.end_render_pass(SubpassEndInfo::default())
.unwrap();
builder.build().unwrap()
})
.collect()
}
#[derive(BufferContents, Vertex)]
#[repr(C)]
pub struct MyVertex {
#[format(R32G32_SFLOAT)]
pub position: [f32; 2],
}